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Abstract

Necessary and sufficient conditions for the existence of a hyper-parahermitian connection with
totally skew-symmetric torsion (HPKT-structure) are presented. It is shown that any HPKT-structure
islocally generated by a real (potential) function. Aninvariantfirst order differential operator is defined
on any almost hyper-paracomplex manifold showing that it is two-step nilpotent exactly when the
almost hyper-paracomplex structure is integrable. A local HPKT-potential is expressed in terms of this
operator. Examples of (locally) invariant HPKT-structures with closed as well as non-closed torsion
3-form on a class of (locally) homogeneous hyper-paracomplex manifolds (some of them compact)
are constructed.
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1. Introduction

We study the geometry of structures on a differentiable manifold related to the algebra
of paraquaternions together with a naturally associated metric which is necessarily of
neutral signature. This structure leads to the notion of (almost) hyper-paracomplex and
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hyper-parahermitian manifolds in dimensions divisible by four. These structures are also
attractive in theoretical physic since some of them play a role in string tfi2ér$8,6,19]
and integrable systeni9].

Hyper-parahermitian geometry may be interpreted as the indefinite analog of hyper-
hermitian geometry, but there are important differences. We provide hyper-parahermitian
versions of many local and some global results for hyper-hermitian manifolds, specially we
adopt the hyper-complex constructiondd6,14,4](but see als§30,24,25,33].

We treat integrable almost hyper-parahermitian structures, which admit compatible lin-
ear connections with totally-skew symmetric torsion, briefly HPKT-structure. It is known
that in dimension 4, the conformal structure of neutral signature determined by a hyper-
paracomplex structure is necessarily anti-self-¢dl8,21] We show that the correspond-
ing conformal hyper-parahermitian structure is an HPKT-structure. In higher dimensions,
we find necessary and sufficient conditions for the existence of a HPKT-structure in terms
of the exterior derivative of the threegler forms. We give a holomorphic characterization
and show uniqueness of the HPKT-connection.

To illustrate the subtleties of HPKT we use some homogeneous examples and their
compact factors found if20]. In particular, we show the existence of an invariant HPKT-
structure with closed torsion 3-form on the simple Lie gro§p&m, m — 1), m > 1, as-
sociated to the biinvariant Killing-Cartan form of neutral signatureSétgm, m — 1). In
contrast, the HPKT-structures for the hyper-paracomplex structures on the simple Lie groups
SL(2m — 1, R), m > 1 obtained if20] have no compatible biinvariant metric. They may
be associated to (a class of) invariant metrics of neutral signature, which however have
non-closed torsion forms.

We show that any HPKT-structure is locally generated by a real (potential) function
following the ideas developed id]. To this end, using Salamon’s idea from the quater-
nionic case (sefB0]), we define an invariant first order differential operafgithe hyper-
paracomplex operator, on an almost hyper-paracomplex manifold and we show that it is
2-step nilpotent exactly when the almost hyper-paracomplex structure is integrable. Then,
we obtain the local existence of HPKT-potential by proving the léeakactness of certain
D-closed 2-forms.

2. Hyper-paraKihler connection with torsion

Both quaternionsH and paraquaterniong? are real Clifford algebras,H =
C(2,0), H=C(1,1)=C(0,2). In other words, the algebrH of paraquaternions is
generated by the unity 1 and the generathts/y, J3 satisfying theparaquaternionic iden-
tities,

JB=Ji=—J3=1 Jiha=-JoJ1=J3 (2.1)

We recall the notion of almost hyper-paracomplex manifold introduced by Libermann
[23]. An almost quaternionic structure of the second kind on a smooth manifold consists
of two almost product structureg, J> and an almost complex structuyg which mutu-
ally anti-commute, i.e. these structures satisfy the paraquaternionic ide¢giti¢sSuch a
structure is also callecbmplex product structure [3,2].
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An almost hyper-paracomplex structure on a -dimensional manifoldv is a triple
H= (Ja2),a=1,2,3, whereJ,,« = 1, 2 are almost paracomplex structutgs: TM —
TM, andJ3: TM — TM is an almost complex structure, satisfying the paraquaternionic
identities(2.1). We note that on an almost hyper-paracomplex manifold there is actually a 2-
sheeted hyperboloid worth of almost complex structuf%(s:—l) ={c1J1 +c2J2+c3J3:
c]22+ c% — c% = —1} and a 1-sheeted hyperboloid worth of almost paracomplex structures:
S2(1) = {baJi+ baJ2+ baJ3: b2+ b5 —b5=1}.

When eacly,, a = 1, 2, 3is an integrable structur#), is said to be &yper-paracomplex
structure on M. Such a structure is also called sometinpeaudo-hyper-complex [9].
Any hyper-paracomplex structure admits a unique torsion-free connegfibnpreserv-
ing J1, J2, J3 [3,2] calledthe complex product connection.

The Nijenhuis tensol,, of J, is defined by:

No(X, V) = [JuX, Jo¥] + J2[X, Y] — Jo[JuX, Y] — Ju[X, JoY]. (2.2)

It is well known that the structurd, is integrable if and only if the corresponding
Nijenhuis tensowV, vanishes)N, = 0.

Infactan almost hyper-paracomplex structure is hyper-paracomplex if and only if any two
of the three structures,, a = 1, 2, 3 are integrable due to the existence of a linear identity
between the three Nijenhuis tensfiz§,7]. In this case, all almost complex structures of the
two-sheeted hyperboloif#(—1) as well as all paracomplex structures of the one-sheeted
hyperboloide(l) are integrable.

A hyper-parahermitian metric is a pseudo Riemannian metric which is compatible with
the (almost) hyper-paracomplex structiéfe= (J,), a = 1, 2, 3 in the sense that the metric
g is skew-symmetric with respectto eadha =1, 2, 3, i.e.,

g1, 1) = g(J2., J2.) = —g(J3., J3.) = —g(., ). (2.3)

The metricg is necessarily of neutral signature:(27). Such a structure is callgdimost)
hyper-parahermitian structure.
Let F, be the Kahler form associated with the structuge {,),a = 1, 2, 3:

Fo=g(., Ja.)-
The corresponding Lee form is defined@y= —§F, o Jj’. In particular,

2n

0u(X) =D dFulei, Jaei, JZX),
i=1

for an orthonormal/,-adapted basigs, .. ., ez, Jee1, ..., Juea}.

If on a hyper-parahermitian manifold there exists an admissible b&gisiich that
eachJ,,a =1, 2, 3 is parallel with respect to the Levi-Civita connection or equivalently
the three Khler forms are cosedF, = 0 then the manifold is calledyper-paraKiihler.
Such manifolds are also callédpersymplectic [15], neutral hyper-Kéiihler [22,10] The
equivalent characterization is that the holonomy groug @ contained inSp(n, R) if
n > 2[34].
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Forn = 1 an (local) almost hyper-paracomplex structure is the same as oriented neutral
conformal structur§9,12,34,7] The existence of a (local) hyper-paracomplex structure is a
strong condition since the integrability of the (local) almost hyper-paracomplex structure im-
plies that the corresponding neutral conformal structure is anti-selfftid®,21] The nec-
essary and sufficient condition for the integrability of an (local) almost hyper-paracomplex
structure in dimension four is the coincidence of the three Lee fatms, 6, = 63 [21].

We use the following notations: for angform « we define J,w(X1, ..., X,) :=
(—Vo(JsX1,...,J4X,),a=1,2,3 and the operators dyw = —J,dJyw,a =
1, 2, dsw ;= (—1) JadJ3w. In particulard, F, = —dF,(J,., Js., Ju), a= 1,2, 3.

We consider the (para) complex operators:

8(){ = %(d + Eda), 50( = %(d — Eda), 62 — 1’ o= 1, 2
93 = 3(d +id3), 3= 3(d—idg), i?=-1
In particular, a complex functiogff = u + iv is holomorphic with respect to the complex

structure/z iff 93 f = 0 while a paracomplex functidn= u + ev is paraholomorphic with
respect to the paracomplex structugg o« = 1, 2 iff 9,2 = 0.

Definition 2.1. A hyper-parahermitian metrig is hyperparaKdhler with torsion (briefly
HPKT) if there exists a linear connection preserving the hyper-paracomplex structure
whose torsion tensdfV is totally skew-symmetric, i.e.,

Vg=VJ1 =VJ,=VJ3=0,

TV(X,Y, Z) = g(TV(X,Y),Z) = -TV (X, Z, Y). (2.4)
If the torsion 3-form7V is closeddT" = 0, then the HPKT-metric is calledrong HPKT-
metric.

A connection satisfying conditio2.4) will be called brieflyHPKT-connection.

Theorem 2.2. Let (M, g, J1, J2, J3) be a hyper-parahermitian manifold. The following
conditions are equivalent:

Q) (M, g, J1, J2, J3) admits a HPKT-connection;
(2) The following equalities hold:
d1F1 = doFy = d3F3. (2.5)
In this case, the HPKT-connection is uniquely determined by the torsion:

TV = d1F1 = doF> = d3F3. (2.6)
In particular, the three Lee forms coincide, 01 = 62 = 63 = trgTV.

Proof. The required connection is the unique Bismut connection determined by Gauduchon
[13] (see als¢11]) in the hermitian case and by lvanov—Zamko{®$] in the parahermitian
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case due to the compatibility conditigf2.5). Take the trace in2.6) to get the last
identity. [

It is known that in dimension four any hyper-parahermitian metric is anti-self-dual
[1,18,21] The proof of Theorem 6.2 if21] leads to:

Proposition 2.3. Any hyper-parahermitian metric on a hyper-paracomplex 4-manifold is
HPKT. In particular, the Ricci 2-forms of the HPKT-connection all vanish.

3. Homogeneous examples

A non-trivial class of examples for the differential geometric entities defined in the
previous section is provided by certain left-invariant HPKT-structures on (semi) simple
Lie groups which were found if20]. For convenience we reproduce here the explicit
description of/> andJ3. We define the (para-) complex structures on Lie algebras and then
interpret them as homogeneous almost (para-) complex structures on the corresponding
simply connected Lie groups. For brevity we shall sometimes abuse notation and proper
definitions, by indicating only the Lie algebras.

3.1. HPKT-structure on SU(m,m — 1)

The most important example frof@0]is the groupSU (m, m — 1), where the biinvariant
Killing form is the neutral HPKT-metric.

On the simple Lie algebrau(m, m — 1) (of dimension 4 (m — 1)) we define a scalar
product:

B(X,Y)=3(XY), X.Y € su(m,m—1) (3.7)

ObviouslyB is proportional to the Killing form and defines a biinvariant, neutral pseudorie-
mannian metric osU (m, m — 1). Next we produce a convenieBt orthonormal base of

the Lie algebrau(m, m — 1). As usual, we denote b§* € gi(n) the matrix with entry 1

at the intersection of the j-th row and the k-th column and 0 elsewhere. We fix the range of
indices:

j=1...,m—-1, j<k<2m-—j (3.8)
Let 3 be the subspace (abelian subalgebra)¢f:, m — 1) generated by the elements

i(E]+ Egn ) —2EM), j=1....m—1
Let Z%, ... Zz"~1 be any orthonormal base @fwith respect to the scalar prodid@. We

define:

P 2m—jy. i 2m—j i i P o2m—j i
XI=i(E] — Ep,9)y YI=E]" 4+ By, 0 WIEI(ET" —Ep, ). (3.9)

1 Bis obviously negative definite gn
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. [ ES—E]| it j<k<m;
U:Uj:{E,f’"‘j—E’gm_j it m<k<2m— |
V_Vk__{i(E’;JrE,{) if j<k<m;
=Vi= i(E]f’"*ijE’Em_j) if m<k<2m—j (3.10)
o EPTT B, i j<k<m; '
S:SjZ{E(;—E]{ if m<k<2m-—j
T:Tki{i(E,?"j—Eém_j) it j<k<m;
7] - EY if m<k<2m-—j

The invariant vector fields (generated byj, Y/, W/, z/, U, v, sk, T} give a base
of the tangent bundle &fU(m, m — 1). We define an almost hyper-paracomplex structure

by:

J(ZN=XT, J(YDEWIS T(ZD)=WH, (X D)=Y 211
J(UN=VE Ia(SH=TE RUD=TE  Ja(VE)=sk 51
It is shown in[20] that the structur€3.11)is an integrable hyper-paracomplex structure
on SU(m, m — 1), m > 1 which is compatible with the biinvariant (Killing-Cartan) form

of neutral signaturd.

Now we observe, that the above construction gives also a strong HPKT-structure on
SU(m, m — 1). The HPKT-connection is the left-invariant connectiopdefined by postu-
lating all left-invariant vector fields to be parallel.

The torsion of the above connection is the Lie bracket and the torsion tensor
TV(X,Y, Z) = —B([X, Y], Z) is a closed 3-form (due to the Jacobi identity). So, we have
a strong HPKT-structure ofiU (m, m — 1) which is flat. The compatible neutral Killing-
Cartan metric is Einstein.

Simple Lie groups admit cocompact latticed, say I". Hence, we obtain a HPKT-
interpretation of the result proved jR0].

Theorem 3.1. [20] The compact manifolds SU(m, m — 1)/I" admit invariant, flat, strong
HPKT-structures. The neutral HPKT-metric is a non-flat Einstein metric induced by the
Killing-Cartan form.

Remark 3.2. The above procedure can be applied to the graig@m — 1, C))¥ (see
[20]). Thus, we obtain invariant strong and flat HPKT-structures on the compact manifolds
(SL(2m — 1, C)R/r.

3.1.1. A non-strong HPKT-structure on SU(2, 1)
We equipped the eight-dimensional simple Lie gréf{2, 1) with a strong and flat left-
invariant HPKT-structure induced by the left-invariant hyper-paracomplex stru@uire)
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and the Killing-Cartan form. We show below that a sinflayper-paracomplex structure
supports left-invariant HPKT-structure which is not strong and not flat . To be precise, we
consider the following base omn (2, 1):

Z=i(E} + E3 — 2E3); X=i(E} - E3);

W=i(E3 — E3); Y=E} + E}; (3.12)
U=E?— E}; V=i(E$ + E}); '
S=E3 + E%; T=i(E3 — E3).
A hyper-paracomplex structure ot/ (2, 1) is given by:
J3(Z2)=X; J3(V)=W; JAZ2)=W, J(X)=Y;
3(2) 3(Y) 2(2) 2(X) (3.13)

RO)=V; J(S)=T;, JLU)=T;, J2(V)=S,
We claim that the neutral metricdetermined by the following orthonormal basis:

gV, Y) = g(W, W) =g(S,5) =g(I,T) = -1 (3.14)

is a non strong left-invariant HPKT-metric &§U(2, 1) with respect to the left-invariant
hyper-paracomplex structuf8.13) We denote the 1-form dual to a vector field via the
neutral metriq3.14) by the same letter. We calculate

TV = diF1 = doF» = d3F3
=2XAYAW—=—XAUAVH+XASATH+YAUAS—YAVAT
+WAUAT+WAVAS—ZAUANV —-ZASAT;
dr¥ = —4U AV ASAT #0.

Our claim is proved.
3.2. HPKT-structure on SL(2m — 1, R)

Consider the simple Lie grou§i.(2m — 1, R) with the almost hyper-paracomplex struc-
ture(3.11)applied to the following baseof si(2m — 1, R):

ZI=E]+ Eon ) —2ED; Wi=E] - Eon

XI=E" — B, VISP 4 B, (3.15)
Uk=E} - ] VisE" B, |
Sh=E;" 4 B}, T=Ef + Ef.

2 We choose the simplest one in a notational sense. Obviously, any neutral metric on the Lie glggtich
is compatible with a paraquaternionic structure, gives a left invariant metric on the corresponding Li&group
However, there is only one biinvariant metric on a simple group.

3 The range of indices is as in formu(a.8).
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The structur€3.11)is an integrable left-invariant hyper-paracomplex structur&iof@m —
1, R), m > 1[20].
A left-invariant neutral metrigg, determined by the following orthonormal basis of
sl(2m — 1, R):
J 70y = b X7y = k Uky = k yky =
g(Z_,Z_)—g(X’,X)_—g(U,U,) g(Vi, vi) =1, (3.16)
g(Y9, Y1) = g(Wi, Wi) = g(S%, S¥) = o(T}, T}) = -1

isan HPKT-metriconl(2m — 1, R), m > 1withrespectto the hyper-paracomplex structure
(3.11) which has not closed torsion 3-form. Indeed, denoting the 1-form dual to a vector
field via the neutral metri¢3.16)by the same letter, we calculate

TV=d1F1=d2F2=d3F3
=2XI ANYI AW = XIANUSAVE+ XTI ASEATE + Y AU A S
v k k j k k j k k j k k
YIANVENT; + W/ AU AT + W AVEAS; +Z7 AU AT
5 k k.
Z/\Vj/\Sj,
dTV = —8U; AVEASS AT} #0.

The groupsSL(2m — 1, R) admit cocompact latticel8], say". Thus, we arrive at a
HPKT-extension of the results [20].

Theorem 3.3. The compact manifolds SL(2m — 1, R)/I" admit an HPKT-structure which
are not strong.

3.3. HPKT-structure on 2R @ sl(2, C)
We consider the following base oiR2p si(2, C):

e e DA

U=iz, V=iX;  S=iY;  T=iW. (3.17)

We define an almost hyper-paracomplex structure on the Lie alg@&@a2(2, C) = 2R &

so(3, 1) by (3.13)using the bas€3.17). It is easy to check that this structure is integrable.
We claim that the neutral metricdetermined by the orthonormal bagss14)is a strong

left-invariant HPKT-metric on the simply connected Lie gra@associated to the Lie al-

gebras R @ si(2, C) = 2R & so(3, 1) with respect to the left-invariant hyper-paracomplex

structure(3.13) To prove the claim, we denote the 1-form dual to a vector field via the

neutral metriq3.14)by the same letter. We obtain

TV =diF1 = doFp = d3F3= S AdS — Y A dY; ar¥ =0

which proves our claim.
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Let A ¢ SL(2, C) be a cocompact discrete subgroup andlet Z x Z x A ¢ G. We
obtain:

Theorem 3.4. The compact manifold G/I" admits a strong HPKT-structure.

4. Characterization of HPKT-structures

In this section, we characterize HPKT-structures in terms of the existence of holomorphic
objects. We use ideas from the definite (HKT) case describgtl6iyi4] and find other
compact examples.

4.1. Holomorphic characterization

We recall that the space of paracomplex (1, 0)-vectors (resp. (0, 1)-vectors) with respect
to the paracomplex structurg, @ = 1, 2 is spanned by paracomplex vectors of type-
€Jo X (resp.X — €J,X) and the space of complex (1, 0)-vectors (resp. (0, 1)-vectors) of
the complex structuréds is spanned as usual by complex vectors of t¥pe iJ3X (resp.
X +iJ3X).

It is easy to check that

: the 2-formF» — ¢ F3 is of type (2, 0) while the 2-forn¥, + ¢ F3 is of type (0, 2) with
respect to the paracomplex structuie

: the 2-form F3 + € Fy is of type (2, 0) while the 2-fornFs — € F1 is of type (0, 2) with
respect to the paracomplex structue

: the 2-form Fy — i F> is of type (2, 0) while the 2-fornFy + i F> is of type (0, 2) with
respect to the complex structure;

Proposition 4.1. Let (M, g, J,, a = 1, 2, 3) be a hyper-parahermitian manifold. The fol-
lowing conditions are equivalent:

(8 M, g, Ju,a =1, 2, 3) is a PHKT manifolld,

(b) 31(F2 — €F3) = 0 or equivalently 91(F2 + €F3) = 0;
(c) 32(F3 + €F1) = 0 or equivalently 92(F3 — €F1) = O;
(d) 33(F1 — i F2) = O or equivalently 33(F1 + i F2) = 0.

Proof. We have:
— 1 €
01(F2 — €F3) = 01(F2 + €F3) = E(sz —d1F3) — é(dFs —diF).

Therefored1(F2 — € F3) = 0, when the real and imaginary parts both vanishes. We cal-
culate
d1F3 = —J1dJ1F3 = —J1d(F3 0 J1) = —J1dF3 = (dF30 J1) = (dF3 0 J3J>2)
= — J3(dF3 0 J2) = JoJ3dF3 = JoJ3dJ3F3 = Jod3F3.
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On the other hand
dFy = —d(F20 J2) = —Jzzd.lez = Jodo Fo.

Consequently, the conditieir F3 = dF» is equivalentto the conditia#y F> = d3F3. There-
fore, the Bismut connection of the parahermitian structyre/{) coincides with Bismut
connection of the hermitian structurg, (/3). SinceJ; = J3J2 thenJ; is parallel with re-
spect to the common connecti®n ThereforeV is the Bismut connection fog( J1) which

proves the equivalence of (a) and (b). In a similar way, one completes the proof.

Proposition 4.Implies that the HPKT-condition is not preserved by a generic conformal
transformation of the metric provided the dimension is at least eight.
In the proof ofProposition 4.1we also derive

Corollary 4.2. Suppose F1, Fo and F3 are the Kdhler forms of a hyper-parahermitian
structure. Then the hyper-parahermitian structure is HPKT-structure if and only if

daFp = 5abTV — €apeFe,

where 8, is the Kroneker symbol and €, is the totally skew-symmetric Levi-Civita symbol.

Theorem 4.3. Let (M, J,,a = 1, 2, 3) be a hyper-paracomplex manifold. Then any one of
the following three conditions implies the forth:

(1) Fo+€F3 is a (0, 2)-form with respect to J1 such that 31(F2 4+ €F3) =0 and
Fo(X, J2Y) = g(X, Y) is a symmetric non-degenerate bilinear form of neutral sig-
nature; _

(2) F3—¢F1 is a (0,2)-form with respect to Jo such that 02(F3 — €F1) =0 and
Fi(X, J1Y) = g(X, Y) is a symmetric non-degenerate bilinear form of neutral sig-
nature, .

(3) F1+iF2 is a (0O, 2)-form with respect to J3 such that 93(F1+iF2) =0 and
F3(X, J3Y) = g(X, Y) is a symmetric non-degenerate bilinear form of neutral sig-
nature,

(4) The structure (g, J,, a = 1, 2, 3) is a PHKT structure.

Proof. In view of the Proposition 4.1it suffices to prove that the metrig is hyper-
parahermitian.

Using the fact that¥, + € F3 is of type (Q 2) with respect ta/;. SinceX + €J1 X is of
type (1 0) with respect ta/1, (F2 + eF3)(X + €J1X,Y) = 0, for any vectorsX, Y. It is
equivalent to the identity3(X, Y) = — F»(J1 X, Y). Then,

F(X, J3Y) = —Fo(1 X, J3Y) = —Fo(N1 X, J1J2Y) = —Fa(X, JoY) = —g(X, Y).
So F3(J3X, J3Y) = F3(X, Y) andg is hermitian with respect td3. Since the metric is

parahermitian with respect t andJ1 = J3J2, g is parahermitian with respect th.
Similarly, one get the other assertions]
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4.2. HPKT-structures on compact Nilmanifolds

In this section, we construct further examples of homogeneous HPKT-structures, now
on some (compact) nilmanifolds.

Let {X1,..., X2, Y1,...,Y,, Z} be a basis forR**1, Define commutators by:
[X;,Y;] = Z, all others being zero. These commutators g+ the structure of the
Heisenberg Lie agebra b,. Let R® be the three-dimensional abelian algebra. The direct
sumn = ho, ® R3 is a 2-step nilpotent algebra whose center is four-dimensional. Fix a
basis{E1, E», E3} for R® and consider the following endomorphismsnof

Jo i Xoj—1—> Y25, X2j—> Y251 Z—> Ez, E1— —E3;
J3:Xoj1—> X2j, Y2j-1—>Ye; Z— E1, E2— Ej;
J3 = — JZ =identity, J1=J3Jp. (4.18)

Clearly, JoJ3 = —J3J2. The almost complex structurg satisfies the identity.g., J3.] =
[.,.] which implies that it is an Abelian almost complex structurencdin the sense of5]
and in particular integrable. The next notion seems to be useful.

Definition 4.4. The almost paracomplex structufgis said to bedbelian if the following
identity [J2., J2.] = —[., .] holds.

Applying (2.2) it is easy to check that any Abelian almost paracomplex structure has
vanishing Nijenuis tensor and therefore is integrable. It is easy to verify that the al-
most paracomplex structur® is Abelian onn. Consequently, the almost paracomplex
structureJ; is also Abelian. Hence, the structurg, a = 1, 2, 3 is a left invariant hyper-
paracomplex structure on the simply connected Lie groupvhose Lie algebra is.
Consider the invariant metrig on N for which the basigX;, Y;, Z, E,} is orthonormal
andg(X;, X;) = g(Z, Z) = g(E1, E1) = 1, g(Y;, Y;) = g(E2, E2) = g(E3, E3) = —1.
Clearly, the structureg( J,, a = 1, 2, 3) is a left invariant hyper-parahermitian structure on

N which turns out to be a HPKT since any left invariant (2, 0)-form with respect to the com-
plex structure/s is d3-closed due to a result of Salamf#1] andProposition 4.1Because

Nis isomorphic to the produdi,, x R3 of the Heisenbrg groufi,, and the Abelian group

RR3 we have:

Corollary 4.5. Let I be a cocompact lattice in the Heisenberg group Hy, and 72 a lattice
in R3. The compact Nilmanifold N/(I" x Z3) admits an HPKT-structure.

4.3. HPKT-structure on (Ho, x Slm))/F

Based on the above computations, we can also see that there is a left-invariant HPKT-
structure on the product ofi4+ 1-dimensional Heisenberg grouiy, and the universal

cover Sm) of the simple Lie groupSL(2, R). The Lie algebrasi(2, R) has a basis
{E1, E2, E3} with non-zero brackets given by:

[E1, Eo] = E3, [E2, E3] = —E1, [E3, E1] = Ea.
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The construction of the HPKT-structure on the prod#®f, x SL(2, R) is the same as
those in Sectiod.2 taking E1, E2, E3 to be the generators of(2, R). The integrability

of the (non-abelian) almost hyper-paracomplex structure defindd.tg) as well as the
HPKT-compatibility conditiong2.5) can be checked directly using the commutators of the
left-invariant vector fields. Denote the left-invariant 1-forms dual to the left invariant vector
fields via the metric by the same letters to get:

TV = diFy = doF> = d3F3 = dZ A Z; dr¥ =dZ AndZ # 0.

The last equalities imply that the HPKT-structure is not strong.

Let I'; be a cocompact lattice in the Heisenberg gréap. The universal cove?L/(E,/R)
of the Lie groupSL(2, R) admits a discrete subgroufy such that the quotient space

(SL(2,R)/I?) is a compact 3-manifold26,29,32] Such a space has to be Seifert fibre
spacd32] and all the quotients are classified #9]. We obtain:

Corollary 4.6. The compact manifold (Ho, x SZ-(E,/R)) /(I'1 x I) admits a non-strong
HPKT-structure.

5. Potential theory

Itis well known that a Kahler metric is locally generated by a potential ie a real function
wu satisfyingFs = —ddsu. Similarly, a parakiler metric is locally generated by a potential,
ie a real function satisfyingF1 = ddv [28].

A function w is a potential function for a hyper-parakler manifold {1, g, J,) if the
Kahler forms are equal to:

Fo = J2ddap, dau = —J3du. (5.19)

In this section, we seek a function that generates ahlr forms of a HPKT-manifold.
The definition of the operator,, paraquaternionic identitig®.1), the compatibility
conditions(2.3) and (5.19)mply:

didop = —diJodp = J1dJ1J2dp = Jaddap = —J1F3 = —dadip = ddzu;
d2d3[,L = dngd/,L = sz.]]_d/,L = —szd]_/,t = —JzFl = —d3d2[,L = —ddl,u; (520)
dadip = —dzJJrdp = JadJ3Jidp = Jaddrpu = J3Fp = —didzjn = —ddo .
We generalize this concept to HPKT-manifold.
Definition 5.1. Let (M, g, J,) be a HPKT-structure with Khler formsF;, F»> and F3. A
possibly locally defined function is a potential function for the HPKT-structure if:
F1 = 3(dd1 — dad3)pe, Fo = 3(dd> — dsdi)u, F3 = —3(dd3 + dido) .
(5.21)

In fact any one of the above identities implies the others due to the next.
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Theorem 5.2. Let (M, g, J,) be a HPKT-structure with Kéhler forms F1, F> and F3. Let
VEP be the complex product connection. A possibly locally defined function 1 is a potential
function for the HPKT-structure if any one of the following identities hold.

Fi = 3(ddy — dada)p, (5.22)
Fp = 5(ddz — dadi)p, (5.23)
F3 = —3(dds + dido)., (5.24)
g=3(—Ji— 2+ J) (VY. (5.25)

The torsion 3-form TV is given by TV = —%dldgdgu.
Proof. We calculate, using the fact that the complex product connection is a torsion-free
and preserves the hyper-paracomplex structure, that

ddap(X, Y) = —(V§ dpu)JaY + (V" dp) JaX;

drdop (X, Y) = Jrddgpu(X. Y) = (Vi 5dp) Y — (Vi ydp) 22X

8(X.Y) = —F3(X, JgY) = 3(dd3 + drdg) = 3(1— J1 = Jo + J3) (V")

Thus, the equivalence ¢5.24) and (5.25)s proved.

Similarly, one can get the equivalence(6f22) and (5.25as well as the equivalence
between(5.23) and (5.25)

The formula for the torsion is a consequencé®f1) and (2.6) O

Remark 5.3. In the context of a potential, an HPKT-structure is hyper-péfsir if and
only if the potential functionu satisfies any of the following four identities:

ddip = —dad3zp, ddap = —dzdip, ddzp = didop,

A+ J1+ T2+ J3)(VEPY2u =0.

Corollary 5.4. Let (M, g, J,) be a HPKT-structure with Kdihler forms Fi, F» and F3. A
possibly locally defined function p is a potential function for the HPKT-structure if any one
of the following identities hold.:

F> — €F3 = —231Jo0114; (5.26)
F3+ eF1 = —202J30014; (5.27)
F1—iF> = —233]153/1,. (5.28)

Proof. Due to(5.20)and the definition of the operatosg, 4, We have:
F1—iF> = %(ddl — dod3 — iddy + id3dy) = —233.]153,1/,

The other assertions follow in a similar way.[]
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5.1. HPKT-potential in dimension 4

Now we give a hyperbolic version of the existence of the HKT potentials of Banos and
Swann[4]. We applyTheorem 5.20 the four-dimensional case to prove the existence of a
local HPKT-potential for any HPKT-metric.
Corollary 5.5. Let g be an HPKT-metric on a four-dimensional hyper-paracomplex mani-
fold and let 0 be 1-form defined by the complex product connection via V€Pg = 0 @ g.

A function | is an HPKT-potential for g if and only if it is solution of the hyperbolic
equation

Ap—dp(6F) +2=0,

where A is the hyperbolic Laplacian of the neutral metric g.

In particular, any HPKT-metric on a four-dimensional hyper-paracomplex manifold

admits locally a potential.

Proof. Let A = VEP — v& whereV¢ denote the Levi-Civita connection gf The tensor
A is symmetric A(X, Y) = A(Y, X) since both connections are torsion-free. We also have

0(X)s(Y. Z) = —g(A(X. Y), Z) — g(A(X, 2), Y).
Solving forA, we obtain
g(A(X, Y), Z) = 5(0(2)g(X, Y) — 6(X)(g(Y, Z) — 6(Y)g(Y, 2))).
In particular, ifX is a (local) unit vector field, then
g(A(X, X), Y) = 36(Y) — 0(X)g(X. Y)
and
g(A(X, X) — A(J1X, 11X) — A(J2X, J2X) + A(J3X, J3X), Y) = 6(Y)
forall Y.
The metrig is the unique hyper-parahermitian metric satisfyi{§y, X) = 1. Therefore,
wu is a HPKT-potential if and only if
31— J1— B+ B)(VEP(X. X) =1,
that is

Traceg(VCPd,u) =2
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Note that the hyperbolic Laplaciany is by definition —Traceg(V8dw). Thus, u is a
HPKT-potential forg if and only if

—Ap 4 du(A(X, X) — A(1X, J1X) — A(J2X, J2X) + A(J3X, J3X)) = 2.

The local existence of HPKT-potentials now follows from the general theory for the (ultra)
hyperbolic Laplace operator (see g47] and the references therein).[]

5.2. HPKT-potential in dimension 4n > 8

Here we demonstrate the existence of a local potential for any HPKT-metric (the HKT
case was done by Banos and Swti.

The crucial step is the construction on any almost hyperparacomplex manifold of an
G L(n, H)-invariant first order differential operatd, which is the hyperbolic version of
the hypercomplex (quaternionic) operator of Salamon[3@@. The operatoD is two-step
nilpotent if and only if the structure is hyperparacomplex. Then, we obtain the existence of
a local HPKT-potential in terms of the operafor

The element:

T=—NI®J1—NnRJ+J3RJ3

is independent of the choice of the bakis, Jo, J3} and acts naturally om? with TZ =
21 + 3. The eigenspace decomposition:

A={t=3o{t=-1 (5.29)

is a paraquaternionic invariant in the sense that it is preserveglZify, H)Sp(L, R) and
therefore it is a hyper-paracomplex invariant preservingstiyn, H).

5.3. The hyper-paracomplex differential

Studying the action o6 L(n, H) on the bundleA*, we consider the subbundle:

Ak = 3" (af%e A,
IeS3(-1)

It is not difficult to see that

= > (A e A
Pes(1)
Indeed, any 2-fornw € A2 decomposes according ¢6.29})
o(X,Y) = 3{Bo(X, ¥) + w(/1X, 1Y) + o(J2X, J2Y) — o(J3X, J3Y)}
+ Ho(X, Y) — w(/1X, 1Y) — o(J2X, J2Y) + o(J3X, J3Y)}  (5.30)
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For example,
2_ 420 0.2 11 ,20 0,2 11
A _AJ3 69AJ?, G9AJ3 _AJ2 GBAJZ GBAJz ’
where

Ai’sl ={we A hw=0w and Jow= o),

Ai’zl ={we A ho=-w and Jzw=—o).

If gisahyper-parahermitian metric then thater formFsz (resp. F») is a smooth section of
Azl (resp.,A%’zl) and conversely any smooth sectiggof Azl (resp.,F» of Aﬁ’zl) definesan
(possibly degenerate) hyper-parahermitian metrie — F3(., J3.) (resp.,g = Fa(., .J2)).
We will call such a forrmu hyper-paracomplex (1, 1)-form.

There is a projection : A¥ — A¥, whose kernel is the subbundle:

B — m (AI;fl,l o A/;fz,z S.@ A},kfl)
1eS3(-1)

m (Ai;Ll ® AI;;Z,Z - A%kfl).
Pes?(1)

In particular, the two eigenspaces of the operatare related withA?, B? as follows:
A’={t=-1), B*={(i=3}.
The projections»” andw?” are given by:

(X, Y) = 1Bw(X. V) + 0(J1X, 1Y) + o(J2X. ]2Y) — o(J3X, J3Y)),
o (X, Y) = Ho(X, Y) — 0(J1X, 1Y) — o(J2X, J2Y) + o(J3X, J3Y)}.

We define théyper-paracomplex differential:
D: Ak — Ak+L
simply by composition of the projectiopend the exterior differentia:
D=nod.

For example, itv is a 1-form, then,
Dw = (dw)i’so + (da))cJ)s2 + %((da))zl + Jz(da))i’sl)

= (d) 70 + (dw) 57 + 3((dw)} — J3(dw)},) (5.31)
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Theorem 5.6. An almost hyper-paracomplex structure is integrable if and only if D*> = 0.

Proof. The conditionD? = 0 is equivalent to the assertion that the exterior derivative of
a 2-form of type (1, 1) relative to all € S?(—1) and allP € 52(1) has no (0, 3)+(3, 0)-
component relative to any € Sf(—l) and to anyP € Sf(l). The latter condition holds
on a hyper-paracomplex manifold since all almost complex structures of the two-sheeted
hyperboloids?(—1) as well as all paracomplex structures of the one-sheeted hyperboloid
Sf(l) are integrable due to the existence of a linear identity between their Nijenhuis tensors
[21,7].

To prove the converse, 162 be (1, 1)-form with respect to the almost complex structure
Ja, 2 € AT'. The 2-formC defined byC(X. Y) = (X, Y) — 2(J1X, J1Y) belongs taB?.
The conditionDC = 0 is equivalent to the relation:

dC(X,Y,Z) =dC(IX, IY, Z) +dC(IX, Y, 1Z) + dC(X, 1Y, 1Z)
forall 7 € $?(—1) and
—dC(X, Y, Z) = dC(PX, PY, Z) + dC(PX, Y, PZ) + dC(X, PY, PZ)

for all P € S2(1). In particular,
—dC(J3X, J3Y, J3Z) = dC(J1X, 1Y, J3Z) 4+ dC(J1X, J3Y, J1Z)
+dC(J3X, J1Y, 112Z). (5.32)

Let V€P be a complex product connectioi¢” J, = 0, with torsion7¢”. Then, the Ni-
jenhuis tensors are related wittf © as follows:

No=—TPue Ja) = JPTCP(L ) + JuTC P (Jun, ) + JTEP(L J,0). (5.33)
Use(5.33)to express the exterior derivative of a 2-form as:
dC(X,Y,Z) = VPex;y, 2)+ vere(y; z, X) + vePc(z; X, Y)
+C(TCP(X,Y), Z) + C(TCP(Y, 2), X) + C(T€F(Z, X), Y). (5.34)
Insert(5.34)into (5.32)and usg5.33)to get:
R(J3N2(J3X, J3Y), Z) + 2(J3aN2(J3Y, J3Z), X) + 2(JaN2(J3Z, J3X), Y)
+ R2(J1N2(J3X, J3Y), J2Z) + $2(J1N2(J3Y, J3Z), J2X)
+ R(J1N2(J3Z, J3X), JoY) =0 (5.35)

valid for any (1, 1)-form with respect tds. In particular, take2 = Z A J3Z, we get from
(5.35)that N, = 0.

Similarly, we obtainV; = 0. Hence, the almost hyper-paracompex structure is integrable
[21]. O
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Further, we need two lemmas:

Lemma5.7. Let F € Azl be a non-degenerate hyperparacomplex (1, 1)-form on a hyper-
paracomplex manifold (M, J1, J2, J3). The metric g = —F (., J3.) is HPKT-metric if and
only if F is D-closed, DF = 0.

Such a form is called a HPKT-form.

Proof. Suppose thais HPKT. For any complex structures Sf(—l) (paracomplex stru-
crure P € $2(1)) the formdF; (dFp) has type (21) + (1, 2) with respect to the complex
structurel (paracomplex structur®). But sinced; Fy = d F» = d3F3 we deduce thalF;
(dFp) has type (21) + (1, 2) with respect to the two paracomplex structures and the com-
plex structuredF; € B3 (dFp € B3 thatisDF; = 0 (DFp = 0). SinceF; = F (Fp = F)
we obtain the result.

Suppose now thab F = 0. The conditionF € A(Jls’l) also reads as:

F(X,Y) = F(J3X, J3Y) = F(J1X, 1Y), F(J3X, J1Y) = F(J1X, J3Y). (5.36)
Use the torsion free complex product connecti@34), (5.36) and (5.32jo get:
—dF(J3X, J3Y, J3Z) = VP F(13X; Y, Z) +VCP F(J3Y; Z, X) + VP F(J3Z; X, Y)
+ 2VCP F(X; Y, J3Z) + 2VCP F(hY; W Z, J3X)
+2VCPF(1Z; WX, J3Y).
Consequently,
—dF(J3X, J3Y, JaZ) = VP F(U1X; WY, JaZ) + VEP F(Y; W Z, J3X)
+VEPF(ILZ; 11X, J3Y).
DefineG = F(-, J2-), we have the following sequence of equalities
—dG(1X, 1Y, 1Z) = =V PG X; 1Y, W Z) — VP G(hY; 11 Z, J1X)
—VOPG(hZ; WX, J1Y)
= VPF(X; 1Y, 3Z) + VP F(LY; WZ, J3X)
+ VP F(1LZ; WX, J3Y)
= —dF(J3X, J3Y, J3Z)

and thereford F(J3X, J3Y, J3Z) = dG(J1X, J1Y, J1Z). In other wordsgds F3 = d1 Fy with
F3=FandF1=G. 0O

Lemma 5.8. A PHKT-metric locally admits a potential if and only if the corresponding
HPKT-form is locally D-exact.

Proof. Supposethaf = —31(dds + dido) . ThenF = 3(d0 + J1df) with = —Jadp =
—dzu. Note thatif is (1, 1)-form (for J3) sincedd = —ddsu. Therefore F' = D6 according
to (5.31)
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Conversely, suppose that= D@ for some 1-forn®. Since F is a (11)-form for J3, we
obtain from(5.31)

o e AGY,  F = 1(do + J1do).

SinceJs is an integrable complex structure, the logéd-lemma holds: locally there exists
wu such thatdd = —ddsu. We get then

F = 1(d0 + J1d6) = —i(dd3 + drdo). O

Theorem 5.9. On an (4n > 8)-dimensional manifold any HPKT-metric admits locally an
HPKT-potential or equivalently any D-closed HPKT-form is locally D-exact.

Proof. Any (4n > 8)-dimensional HPKT-manifold is a manifold with a structure group
contained inSp(n, R) C GL(n, H) and it is 1-integrable due to the existence of a torsion-
free GL(n, H)-connection, the complex product connecti@3]. Therefore, since the
operatorD is G L(n, H)-invariant, it is sufficient to show that ary-closed HPKT-form is
locally D-exact inR** with the standard HPKT-structure.

In R* we split the complex coordinates into two sets/(w/}, j=1,...,n). The
hyper-paracomplex structure is given by:

ow/’
—idwl @ O —id @ 9. 1 idwl & -2 — idsi @ o
Jo =idw ®azl idz ®awj+zdw ®BZ/ idz ®au7_,,

J3=idw ® 3% —id7 @ 5% —idw! @ % +idz! ® 75

hi=—di @ 35 —dwl @ 35 +dT @ 5 +duw ©

LetF3 e Azl, DF3 = 0. The hyper-parahermitian condition for the 2-teriset F3(., J3)
implies that
hpize = hykgiv hpigh = —hgi. (5.37)
The conditiond1 F1 = d3F3 becomes:
i it + hog i+ hoigi e =00 ozt + Ryt i+ Royizi b =0
hyizez +hyiz o+ hyzix =0, hyjge 0+ hog i+ hgi x =0, (5.38)
hzjzl’l;k — hzk?!wj — ]’lzjl;k’zj =0, hzjzk’wl — hzjzj’wk + l’lwk?’zj =0,
hz-’?‘,? - hzj?,?‘ - hwk?,tﬂf =0, hzf?,zk - hzk?,z-f + hzfzﬂk,w’ =0.
The first and second lines @.38) when combined with the antisymmetry jirk of /
allow us to apply the locala-lemma. Therefore, we can write:

hzjwk = (3Zj31;k — azka,;j)u; hwjz_k = (3w_/3zk — Ok 3;,')[1,, (5.39)

Ziwks

whereu is some (real) (by para-hermiticity of the metric-and therefore identical in the two
equationg5.39) function. Inserting’5.39)into the third equation of5.38)gives:

8];/((}11]27 — Wiz ) — 8@/(/11@ — M,Zkg) =0, (5.40)
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and therefore,
hyizk = W, iz +05i 0 (5.41)

for some integration one fora.. Combining this with the fourth equation (8.38)gives
az = [, k. Thus, we get that the functign generateg’s. TheLemma 5.8completes the
proof. [

Remark 5.10. A hyperbolic version of Salamon’s quaternionic operator [30]. We recall
that aralmost paraquaternionic structure onM is arank-3 subbundlB ¢ End(TM) which

is locally spanned by an almost hyper-paracomplex strudtute (J,). Equivalently, the
structure group of M can be reduced t6 L(n, H)Sp(1, R). A linear connection ofM is
calledparaquaternionic connection if it preservesP. An almost paraquaternionic structure
is said to be @araquaternionic if there is a torsion-free paraguaternionic connection. The
paraguaternionic condition controls the Nijenhuis tensors in the sensE({kat’)(J,) :=
N,(X,Y) preserves the subbundleWhenn > 2, the paraquaternionic condition is a strong
condition which is equivalent to the 1-integrability of the associatddn, H)Sp(1, R)-
structure[2,3]. We can extend the hyper-paracomplex oper&tdefining it on an almost
paraquaternionic manifold locally in the same way. Consequéritsprem 5.6s also true,
namely an almost paraquaternionic manifold is paraquaternionic exactly WhenO0.
The proof of Theorem 5.6goes through in this case also. Now the(1, R)-part of the
paraquaternionic connection used, adds an additi§r{al R) term in formula(5.33)which
reflects on(5.35) whence the Nijenhuis tensors preserve the subbubdlésing the 1-
integrability of the paraquaternionic structure and the proofteorem 5.%ne gets the
local exactness of certaip-closed forms.
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